Introduction Analysis script
- This is an R Markdown script (Allaire et al. 2021) with exemplatory basic analyses for the 7C vaccination readiness scale
Presets
R markdown
Sample description
# Age
knitr::kable(describe(df$age), 'simple', caption = 'Descriptive Statistics: Age')
Descriptive Statistics: Age
X1 |
1 |
690 |
56.55 |
15.55 |
58 |
57.65 |
16.31 |
19 |
94 |
75 |
-0.5148 |
-0.49 |
0.5921 |
# Gender
df$gender <- set_labels(df$gender,
labels = c("Male", "Female", "Other"))
knitr::kable(frq(df$gender), 'simple', caption = 'Gender frequencies in sample')
1 |
Male |
284 |
41.16 |
41.16 |
41.16 |
2 |
Female |
403 |
58.41 |
58.41 |
99.57 |
3 |
Other |
3 |
0.43 |
0.43 |
100.00 |
NA |
NA |
0 |
0.00 |
NA |
NA |
Descriptive statistics 7C
Descriptive Statistics: 7C items
conf_01 |
1 |
690 |
5.468 |
1.526 |
1 |
7 |
6 |
0.0581 |
conf_02 |
2 |
690 |
5.412 |
1.484 |
1 |
7 |
6 |
0.0565 |
conf_03 |
3 |
690 |
6.123 |
1.267 |
1 |
7 |
6 |
0.0482 |
cmpcy_01 |
4 |
690 |
6.184 |
1.360 |
1 |
7 |
6 |
0.0518 |
cmpcy_02 |
5 |
690 |
6.106 |
1.424 |
1 |
7 |
6 |
0.0542 |
cmpcy_03 |
6 |
690 |
5.825 |
1.585 |
1 |
7 |
6 |
0.0604 |
const_01 |
7 |
690 |
5.851 |
1.472 |
1 |
7 |
6 |
0.0561 |
const_02 |
8 |
690 |
4.916 |
1.865 |
1 |
7 |
6 |
0.0710 |
const_03 |
9 |
690 |
6.314 |
1.199 |
1 |
7 |
6 |
0.0457 |
calc_01 |
10 |
690 |
3.451 |
2.212 |
1 |
7 |
6 |
0.0842 |
calc_02 |
11 |
690 |
3.885 |
2.173 |
1 |
7 |
6 |
0.0827 |
calc_03 |
12 |
690 |
3.849 |
2.187 |
1 |
7 |
6 |
0.0833 |
colr_01 |
13 |
690 |
6.012 |
1.476 |
1 |
7 |
6 |
0.0562 |
colr_02 |
14 |
690 |
6.378 |
1.181 |
1 |
7 |
6 |
0.0449 |
colr_03 |
15 |
690 |
6.109 |
1.368 |
1 |
7 |
6 |
0.0521 |
cmpli_01 |
16 |
690 |
4.465 |
2.025 |
1 |
7 |
6 |
0.0771 |
cmpli_02 |
17 |
690 |
5.478 |
1.611 |
1 |
7 |
6 |
0.0613 |
cmpli_03 |
18 |
690 |
4.070 |
1.997 |
1 |
7 |
6 |
0.0760 |
consp_01 |
19 |
690 |
5.936 |
1.452 |
1 |
7 |
6 |
0.0553 |
consp_02 |
20 |
690 |
4.952 |
1.711 |
1 |
7 |
6 |
0.0651 |
consp_03 |
21 |
690 |
5.548 |
1.651 |
1 |
7 |
6 |
0.0629 |
Descrictives of mean values
Descriptive Statistics: 7C components
conf_m |
1 |
690 |
5.668 |
1.112 |
1.333 |
7 |
5.667 |
0.0423 |
cmpcy_m |
2 |
690 |
6.038 |
1.167 |
1.000 |
7 |
6.000 |
0.0444 |
const_m |
3 |
690 |
5.694 |
1.141 |
1.333 |
7 |
5.667 |
0.0434 |
calc_m |
4 |
690 |
3.728 |
1.579 |
1.000 |
7 |
6.000 |
0.0601 |
colr_m |
5 |
690 |
6.166 |
1.171 |
1.000 |
7 |
6.000 |
0.0446 |
cmpli_m |
6 |
690 |
4.671 |
1.540 |
1.000 |
7 |
6.000 |
0.0586 |
consp_m |
7 |
690 |
5.479 |
1.226 |
1.000 |
7 |
6.000 |
0.0467 |
mean_7c |
8 |
690 |
5.349 |
0.866 |
1.571 |
7 |
5.429 |
0.0330 |
mean.short_7c |
9 |
690 |
5.305 |
1.028 |
1.000 |
7 |
6.000 |
0.0391 |
Histograms 7C
library(psych)
# Confidence
psych::multi.hist(df %>% select(conf_01:conf_03))
# Complacency
psych::multi.hist(df %>% select(cmpcy_01:cmpcy_03))
# Csonatraints
psych::multi.hist(df %>% select(const_01:const_03))
# Calculation
psych::multi.hist(df %>% select(calc_01:calc_03))
# Collective Responsibility
psych::multi.hist(df %>% select(colr_01:colr_03))
# Compliance
psych::multi.hist(df %>% select(cmpli_01:cmpli_03))
# Conspiracy
psych::multi.hist(df %>% select(consp_01:consp_03))
# component Means
psych::multi.hist(df %>% select(conf_m:consp_m))
# long version and short version total mean scores
psych::multi.hist(df %>% select(mean_7c:mean.short_7c))
Inter Item Correlations
corPlot(df %>% select(conf_01:consp_03))